derivative f(x)=ln(sin(x))
|
derivative\:f(x)=\ln(\sin(x))
|
slope 6x+10y=8
|
slope\:6x+10y=8
|
polar(4,4)
|
polar(4,4)
|
derivative f(x)=cos(x^3)
|
derivative\:f(x)=\cos(x^{3})
|
slope f(x)=-2x+5
|
slope\:f(x)=-2x+5
|
tangent f(x)=-3x^2-6x,\at x=-1
|
tangent\:f(x)=-3x^{2}-6x,\at\:x=-1
|
derivative 4e^x
|
derivative\:4e^{x}
|
derivative \sqrt[3]{x^2}+sqrt(x)
|
derivative\:\sqrt[3]{x^{2}}+\sqrt{x}
|
derivative f(x)=π
|
derivative\:f(x)=π
|
derivative f(x)= 1/(3x^2)+4x^3
|
derivative\:f(x)=\frac{1}{3x^{2}}+4x^{3}
|
derivative f(x)=-12x^2+9x,\at x=6
|
derivative\:f(x)=-12x^{2}+9x,\at\:x=6
|
midpoint(1,3)(3,5)
|
midpoint(1,3)(3,5)
|
slope y=5x+2
|
slope\:y=5x+2
|
cartesian(6,(2π)/3)
|
cartesian(6,\frac{2π}{3})
|
derivative f(x)=ln(3x)
|
derivative\:f(x)=\ln(3x)
|
derivative e^{x^2}*2x
|
derivative\:e^{x^{2}}\cdot\:2x
|
cartesian(4,π)
|
cartesian(4,π)
|
derivative 4x^2
|
derivative\:4x^{2}
|
tangent y=ln(x)
|
tangent\:y=\ln(x)
|
line(-6,0),(0,1)
|
line(-6,0),(0,1)
|
derivative f(x)=ax^2+bx+c
|
derivative\:f(x)=ax^{2}+bx+c
|
derivative f(x)=x+2
|
derivative\:f(x)=x+2
|
polar(5,5)
|
polar(5,5)
|
slope y=2
|
slope\:y=2
|
integral x^2
|
integral\:x^{2}
|
midpoint(-3,-8)(-6.5,-4.5)
|
midpoint(-3,-8)(-6.5,-4.5)
|
slope-3
|
slope\:-3
|
midpoint(-8,-6)(-4,10)
|
midpoint(-8,-6)(-4,10)
|
derivative f(x)=(3x-x^3+1)^4
|
derivative\:f(x)=(3x-x^{3}+1)^{4}
|
derivative f(x)=xe^x
|
derivative\:f(x)=xe^{x}
|
derivative 1-e^x
|
derivative\:1-e^{x}
|
derivative f(x)= x/2
|
derivative\:f(x)=\frac{x}{2}
|
polar(-3,-3)
|
polar(-3,-3)
|
derivative x-1
|
derivative\:x-1
|
derivative f(x)=sin(x)
|
derivative\:f(x)=\sin(x)
|
derivative f(x)= 1/9 x^3+1/21 x-19
|
derivative\:f(x)=\frac{1}{9}x^{3}+\frac{1}{21}x-19
|
derivative f(x)=sqrt(x+3)
|
derivative\:f(x)=\sqrt{x+3}
|
tangent f(x)=sqrt(x),\at x=9
|
tangent\:f(x)=\sqrt{x},\at\:x=9
|
derivative x^2-4x+5
|
derivative\:x^{2}-4x+5
|
derivative y=2x+5
|
derivative\:y=2x+5
|
derivative x(x-4)^3
|
derivative\:x(x-4)^{3}
|
derivative f(x)= 1/(x^2),\at x=2
|
derivative\:f(x)=\frac{1}{x^{2}},\at\:x=2
|
midpoint(-7,-7)(-6,-1)
|
midpoint(-7,-7)(-6,-1)
|
midpoint(-4,-3)(7,-5)
|
midpoint(-4,-3)(7,-5)
|
normal x^2+y^2-3xy+4=0,\at(2,4)
|
normal\:x^{2}+y^{2}-3xy+4=0,\at(2,4)
|
derivative f(x)=ln(x-5)
|
derivative\:f(x)=\ln(x-5)
|
midpoint(-7,5)(7,3)
|
midpoint(-7,5)(7,3)
|
polar(3sqrt(3),3)
|
polar(3\sqrt{3},3)
|
derivative f(x)=(sin(x)-cos(x))/(sin(x)+cos(x))
|
derivative\:f(x)=\frac{\sin(x)-\cos(x)}{\sin(x)+\cos(x)}
|
derivative g(x)=((3x-2))/((x^2+2))
|
derivative\:g(x)=\frac{(3x-2)}{(x^{2}+2)}
|
x=-5
|
x=-5
|
polar(-4,4sqrt(3))
|
polar(-4,4\sqrt{3})
|
derivative x^3ln(x)
|
derivative\:x^{3}\ln(x)
|
distance(7,-1)(-8,-9)
|
distance(7,-1)(-8,-9)
|
slope 3x+4y=8
|
slope\:3x+4y=8
|
slope x=4.2
|
slope\:x=4.2
|
integral sin(2x)
|
integral\:\sin(2x)
|
line(20,10)(2,5)
|
line(20,10)(2,5)
|
line(-2,0)(0,2)
|
line(-2,0)(0,2)
|
slope y= 4/5 x-3
|
slope\:y=\frac{4}{5}x-3
|
derivative e^{3x}cos(2x)
|
derivative\:e^{3x}\cos(2x)
|
derivative f(x)=x^2+1
|
derivative\:f(x)=x^{2}+1
|
slope(2,3)(4,9)
|
slope(2,3)(4,9)
|
midpoint(15,-3)(5,12)
|
midpoint(15,-3)(5,12)
|
perpendicular 2/3 x-3,\at(0,-3)
|
perpendicular\:\frac{2}{3}x-3,\at(0,-3)
|
polar(2sqrt(2),2sqrt(2))
|
polar(2\sqrt{2},2\sqrt{2})
|
tangent f(x)=ln(x),\at x=1
|
tangent\:f(x)=\ln(x),\at\:x=1
|
polar(4sqrt(3),4)
|
polar(4\sqrt{3},4)
|
integral x
|
integral\:x
|
slope y= 2/3 x
|
slope\:y=\frac{2}{3}x
|
derivative f(x)=5x^2(x+47)
|
derivative\:f(x)=5x^{2}(x+47)
|
derivative y=csc(x)
|
derivative\:y=\csc(x)
|
derivative tan(x-y)= y/(1+x^2)
|
derivative\:\tan(x-y)=\frac{y}{1+x^{2}}
|
tangent e^x
|
tangent\:e^{x}
|
derivative f(x)=e^x
|
derivative\:f(x)=e^{x}
|
polar y=8x^2
|
polar\:y=8x^{2}
|
derivative x^2+x+1
|
derivative\:x^{2}+x+1
|
derivative y=sqrt(1-x^2)
|
derivative\:y=\sqrt{1-x^{2}}
|
line(3,0)(0,-2)
|
line(3,0)(0,-2)
|
polar y=3x^2
|
polar\:y=3x^{2}
|
tangent y=(2x-5)/(x+1),\at x=0
|
tangent\:y=\frac{2x-5}{x+1},\at\:x=0
|
polar(4,4sqrt(3))
|
polar(4,4\sqrt{3})
|
polar(-3,4)
|
polar(-3,4)
|
cartesian(6,(5π)/4)
|
cartesian(6,\frac{5π}{4})
|
polar(-sqrt(2),-sqrt(2))
|
polar(-\sqrt{2},-\sqrt{2})
|
f(-1)=1
|
f(-1)=1
|
derivative y=sqrt(x)
|
derivative\:y=\sqrt{x}
|
cartesian(4,(3π)/2)
|
cartesian(4,\frac{3π}{2})
|
polar x^2+y^2-4x=0
|
polar\:x^{2}+y^{2}-4x=0
|
perpendicular 4y=5x-8
|
perpendicular\:4y=5x-8
|
polar(0,-2)
|
polar(0,-2)
|
polar(0,2)
|
polar(0,2)
|
T=2πsqrt(l/g)
|
T=2π\sqrt{\frac{l}{g}}
|
polar(-2,2sqrt(3))
|
polar(-2,2\sqrt{3})
|
slope 2x-3y=9
|
slope\:2x-3y=9
|
polar(3,3)
|
polar(3,3)
|
derivative f(x)=sin(x)cos(x)
|
derivative\:f(x)=\sin(x)\cos(x)
|
derivative f(x)=4^x
|
derivative\:f(x)=4^{x}
|
slopeintercept x-y=-2
|
slopeintercept\:x-y=-2
|
derivative f(x)=x^2+3
|
derivative\:f(x)=x^{2}+3
|